4.6 Article

Simulated three-dimensional branched lightning in a numerical thunderstorm model

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2000JD000244

关键词

lightning; thunderstorm electrification; numerical thunderstorm model

向作者/读者索取更多资源

[1] Lightning discharges are simulated by using a stochastic dielectric breakdown model within a numerical thunderstorm model with extensive parameterizations of electrification mechanisms. The lightning model simulates the macroscopic bidirectional extension of discharges as a step-by-step stochastic process. Discharge channels are propagated on a uniform grid, and the direction of propagation (including diagonals) for a particular step is chosen randomly, with the probability for choosing a particular direction depending on the net electric field. After each propagation step the electric fields are recomputed via Poisson's equation to account for the effect of the conducting channel. The lightning parameterization produces realistic looking, three-dimensional, branched lightning discharges. A variety of lightning types have been produced, including intracloud discharges, negative cloud-to-ground (CG) lightning, and positive CG lightning. The model simulations support the hypothesis that negative CG flashes occur only when a region of positive charge exists below the main negative charge region. Similarly, simulated positive CG flashes were found to occur only in regions of storms where the two significant charge layers closest to ground had roughly a normal dipole'' structure (i.e., positive charge above negative).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据