4.8 Article

The use of a coin shaped implant for direct in situ measurement of attachment strength for osseointegrating biomaterial surfaces

期刊

BIOMATERIALS
卷 23, 期 10, 页码 2201-2209

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0142-9612(01)00353-2

关键词

biomaterials; attachment strength; surface roughness; tensile testing; bone bonding; perpendicular forces; titanium implants; animal model

向作者/读者索取更多资源

Most animal models currently used to study the retention of implants in bone are influenced by shear forces introduced during the retention test. This is mainly due to the implant design, which most often are cylindrical, conical or threaded. In these models interlocking between bone and implant surface will increase the effect of genuine bone bonding and thus give a false positive outcome. The purpose of the present study was to establish a model for testing functional attachment of implants in situ, with minimal influence of interlocking and shear forces, The model involves the use of flat coin shaped implant placed onto the cortical bone of rabbit tibia without mechanical fixation to the bone. The implant is passively retained on the cortical bone by a titanium band retainer. During the healing period, the contact between the coin shaped implants and the bone is restricted to the flat test surfaces. To prevent interlocking effects from lateral bone attachments a polytetrafluoroethylene (PTFE) cap covering the vertical and the upper faces of the implants were used. The tensile test was performed with a gradual, calibrated pull, perpendicular to the bone-implant interface. This pullout model makes it possible to study the kinetics and strength of bone bonding with negligible influence of shear forces or mechanical interlocking. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据