4.7 Article

Soliton ratchetlike dynamics by ac forces with harmonic mixing

期刊

PHYSICAL REVIEW E
卷 65, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.65.056603

关键词

-

向作者/读者索取更多资源

The possibility of unidirectional motion of a kink (topological soliton) of a dissipative sine-Gordon equation in the presence of ac forces with harmonic mixing (at least biharmonic) and of zero mean, is presented. The dependence of the kink mean velocity on system parameters is investigated numerically and the results are compared with a perturbation analysis based on a point-particle representation of the soliton. We find that first order perturbative calculations lead to incomplete descriptions, due to the important role played by the soliton-phonon interaction in establishing the phenomenon. The role played by the temporal symmetry of the system in establishing soliton dc motions that resemble usual soliton ratchets, is also emphasized. In particular, we show the existence of an asymmetric internal mode on the kink profile that couples to the kink translational mode through the damping in the system. Effective soliton transport is achieved when the internal mode and the external force get phase locked. We find that for kinks driven by biharmonic drivers consisting of the superposition of a fundamental driver with its first odd harmonic, the transport arises only due to this internal mode mechanism, while for biharmonic drivers with even harmonic superposition, also a point-particle contribution to the drift velocity is present. The phenomenon is robust enough to survive the presence of thermal noise in the system and can lead to several interesting physical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据