4.5 Article

Sin recombinase from Staphylococcus aureus:: synaptic complex architecture and transposon targeting

期刊

MOLECULAR MICROBIOLOGY
卷 44, 期 3, 页码 607-619

出版社

WILEY
DOI: 10.1046/j.1365-2958.2002.02897.x

关键词

-

向作者/读者索取更多资源

The Sin recombinase from Staphylococcus aureus builds a distinctive DNA-protein synaptic complex to regulate strand exchange. Sin binds at two sites within an 86 basepair (bp) recombination site, resH. We propose that inverted motifs at the crossover site, and tandem motifs at the regulatory site, are recognized by structurally disparate Sin dimers. An essential architectural protein, Hbsu, binds at a discrete central site in resH. Positions of Hbsu-induced DNA deformation coincide with natural targets for Tn552 integration. Remarkably, Sin has the same topological selectivity as Tn3 and gammadelta resolvases. Our model for the recombination synapse has at its core an assembly of four Sin dimers; Hbsu plays an architectural role that is taken by two resolvase dimers in models of the Tn3/gammadelta synapse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据