4.5 Article

Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly(lactide-co-glycolide) microspheres

期刊

JOURNAL OF ORTHOPAEDIC RESEARCH
卷 20, 期 3, 页码 473-482

出版社

WILEY
DOI: 10.1016/S0736-0266(01)00140-1

关键词

-

资金

  1. NIDCR NIH HHS [YI-DE-7006-01] Funding Source: Medline

向作者/读者索取更多资源

We have assessed the biocompatibility of a new composite bone graft consisting or calcium phosphate cement (CPC) and poly(lactide-co-glycolide) (PLGA) microspheres (approximate diameter of 0.18-0.36 mm) using cell culture techniques. CPC powder is mixed with PLGA microspheres and water to yield a workable paste that could be sculpted to fit the contours of a wound. The cement then hardens into a matrix of hydroxyapatite microcrystals containing PLGA microspheres. The rationale for this design is that the microspheres will initially stabilize the graft but can then degrade to leave behind macropores for colonization by osteoblasts. The CPC matrix could then be resorbed and replaced with new bone. In the present study, osteoblast-like cells (MC3T3-E1 cells) were seeded onto graft specimens and evaluated with fluorescence microscopy, environmental scanning electron microscopy and the Wst-1 assay (an enzymatic assay for mitochondrial dehydrogenase activity), Cells were able to adhere, attain a normal morphology, proliferate and remain viable when cultured on the new composite graft (CPC-PLGA) or on a control graft (CPC alone). These results suggest that our new cement consisting of CPC and PLGA microspheres is biocompatible, This is the first time that a 'polymer-in-mineral' (PLGA microspheres dispersed in a CPC matrix) cement has been formulated that is moldable, resorbable and that can form macropores after the cement has set. (C) 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据