4.8 Article

Image segmentation by data-driven Markov Chain Monte Carlo

出版社

IEEE COMPUTER SOC
DOI: 10.1109/34.1000239

关键词

image segmentation; Markov Chain Monte Carlo; region competition; data clustering; edge detection; Markov random field

向作者/读者索取更多资源

This paper presents a computational paradigm called Data-Driven Markov Chain Monte Carlo (DDMCMC) for image segmentation in the Bayesian statistical framework. The paper contributes to image segmentation in four aspects. First, it designs efficient and well-balanced Markov Chain dynamics to explore the complex solution space and, thus, achieves a nearly global optimal solution independent of initial segmentations. Second, it presents a mathematical principle and a K-adventurers algorithm for computing multiple distinct solutions from the Markov chain sequence and, thus, it incorporates intrinsic ambiguities in image segmentation. Third, it utilizes data-driven (bottom-up) techniques, such as clustering and edge detection, to compute importance proposal probabilities, which drive the Markov chain dynamics and achieve tremendous speedup in comparison to the traditional jump-diffusion methods [12], [11]. Fourth, the DDMCMC paradigm provides a unifying framework in which the role of many existing segmentation algorithms, such as, edge detection, clustering, region growing, split-merge, snake/balloon, and region competition, are revealed as either realizing Markov chain dynamics or computing importance proposal probabilities. Thus, the DDMCMC paradigm combines and generalizes these segmentation methods in a principled way. The DDMCMC paradigm adopts seven parametric and nonparametric image models for intensity and color at various regions. We test the DDMCMC paradigm extensively on both color and gray-level images and some results are reported in this paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据