4.5 Article

Mechanotransduction in the lung -: Bronchial epithelial compression regulates MAP kinase signaling and HB-EGF-like growth factor expression

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00270.2001

关键词

mechanotransduction; airway; asthma; remodeling; mechanical stress

资金

  1. NHLBI NIH HHS [HL-6407502, HL-33009, HL-07118] Funding Source: Medline

向作者/读者索取更多资源

Airway smooth muscle constriction leads to the development of compressive stress on bronchial epithelial cells. Normal human bronchial epithelial cells exposed to an apical-to-basal transcellular pressure difference equivalent to the computed stress in the airway during bronchoconstriction demonstrate enhanced phosphorylation of extracellular signal-regulated kinase (ERK). The response is pressure dependent and rapid, with phosphorylation increasing 14-fold in 30 min, and selective, since p38 and c-Jun NH2-terminal kinase phosphorylation remains unchanged after pressure application. Transcellular pressure also elicits a ninefold increase in expression of mRNA encoding heparin-binding epidermal growth factor-like growth factor (HB-EGF) after 1 h, followed by prominent immunostaining for pro-HB-EGF after 6 h. Inhibition of the ERK pathway with PD-98059 results in a dose-dependent reduction in pressure-induced HB-EGF gene expression. The magnitude of the HB-EGF response to transcellular pressure and tumor necrosis factor (TNF)-alpha (1 ng/ ml) is similar, and the combined mechanical and inflammatory stimulus is more effective than either stimulus alone. These results demonstrate that compressive stress is a selective and potent activator of signal transduction and gene expression in bronchial epithelial cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据