4.4 Article

Towards model-based engineering of optoelectronic packaging materials: dielectric constant modeling

期刊

MICROELECTRONICS JOURNAL
卷 33, 期 5-6, 页码 409-415

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0026-2692(02)00010-1

关键词

dielectric constant modeling; composite materials; Maxwell-Wagner equation; interphase characteristics

向作者/读者索取更多资源

Increases in data transmission speeds of optoelectronic devices have consequently increased high-frequency requirements for optoelectronic packaging materials including substrate. EMC/EMI shielding, adhesive and encapsulant (molding and underfill) materials. Most of those materials are polymer/filler composites, and critical materials properties for the device design and packaging include the effective dielectric constant, dielectric loss and their frequency and filler concentration dependence. This work presents a systematic theoretical investigation of the effective dielectric constant of polymer/filler composite materials, and its dependence on the filler concentration, the filler/polymer interaction, and the size of fillers. Our results demonstrate that, in contrary to the prevailing views, the filler concentration dependence of the effective dielectric constant is non-monotonic. Depending on the dielectric constant ratio between filler and polymer matrix, and the degree of interaction between filler and matrix, the effective dielectric constant exhibits an extreme as a function of filler concentration. In addition, our model is demonstrated to contain the Maxwell-Wagner formulation as an asymptotic limit, The present results have significant implications to the targeted formulation of optoelectronic packaging materials. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据