4.4 Article

Properties of the pathways from the lateral amygdal nucleus to basolateral nucleus and amygdalostriatal transition area

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 87, 期 5, 页码 2593-2601

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.2002.87.5.2593

关键词

-

资金

  1. NIAAA NIH HHS [R29 AA-10994] Funding Source: Medline
  2. NINDS NIH HHS [R01-NS-2125] Funding Source: Medline

向作者/读者索取更多资源

Studies have revealed that the amygdala formation is involved in emotional learning, attention, and autonomic functions. Although intra-amygdala connections have been described anatomically, the functional characteristics of these connections are not well understood. We used a rat brain slice preparation with a voltage-sensitive imaging system to compare the electrophysiological characteristics of intra-amygdala pathways. Electrical stimuli delivered to the lateral nucleus (La) caused the optical signal to propagate to basolateral nucleus (BL) and amygdalostriatal transition area (AStr), but not the central nucleus (Ce), consistent with previous anatomical studies, including the recently characterized projections from La to AStr. The velocity of propagation of the evoked potential along the La-AStr pathway was significantly faster than that along the La-BL pathway. In addition, the efficiency of the signal transmission (determined by the rate of decay) along the La-AStr pathway was higher than that along the La-BL pathway. Also, AStr possessed a distinct property of temporal summation of La signals. On the other hand, the La-BL pathway possessed a significantly higher sensitivity to bicuculline/picrotoxin and a stronger paired-pulse inhibition than the La-AStr pathway. Furthermore, the La-BL pathway expressed a higher D-2-amino-5-phosphonovaleric acid (a NMDA blocker) sensitivity than the La-AStr pathway. These results suggest that the La-AStr pathway, which conducts signals with high velocity and less attenuation, may be involved in rapid reflexive responses during fear-induced behavior, whereas the La-BL pathway facilitates signal integration and learning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据