4.4 Article Proceedings Paper

Carbon balance of the taiga forest within Alaska: present and future

期刊

CANADIAN JOURNAL OF FOREST RESEARCH
卷 32, 期 5, 页码 757-767

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/X01-075

关键词

-

类别

向作者/读者索取更多资源

Forest biomass, rates of production, and carbon dynamics are a function of climate, plant species present, and the structure of the soil organic and mineral layers. Inventory data from the U.S. Forest Service (USFS) Inventory Analysis Unit was used to develop estimates of the land area represented by the major overstory species at various age-classes. The CENTURY model was then used to develop an estimate of carbon dynamics throughout the age sequence of forest development for the major ecosystem types. The estimated boreal forest area in Alaska, based on USFS inventory data is 17 244 098 ha. The total aboveground biomass within the Alaska boreal forest was estimated to be 815 330 000 Mg. The CENTURY model estimated maximum net ecosystem production (NEP) at 137, 88, 152, 99, and 65 gm(-2)year(-1) for quaking aspen (Populus tremuloides Michx.), paper birch (Betula papyrifera Marsh.), balsam poplar (Populus balsamifera L.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) BSP) forest stands, respectively. These values were predicted at stand ages of 80, 60, 41, 68, and 100 years, respectively. The minimum values of NEP for aspen, paper birch, balsam poplar, white spruce, and black spruce were -171, -166, -240, -300, and -61 gm(-2)year(-1) at the ages of 1, 1, 1, 1, and 12, respectively. NEP became positive at the ages of 14, 19, 16, 13, and 34 for aspen, birch, balsam poplar, white spruce, and black spruce ecosystems, respectively. A 5degreesC increase in mean annual temperature resulted in a higher amount of predicted production and decomposition in all ecosystems, resulting in an increase of NEP. We estimate that the current vegetation absorbs approximately 9.65 Tg of carbon per year within the boreal forest of the state. If there is a 5degreesC increase in the mean annual temperature with no change in precipitation we estimated that NEP for the boreal forest in Alaska would increase to 16.95 Tg of carbon per year.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据