4.7 Article

The crystallization of low-density polyethylene: a molecular dynamics simulation

期刊

POLYMER
卷 43, 期 11, 页码 3223-3227

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0032-3861(02)00126-X

关键词

molecular dynamics simulation; polyethylene; long branching

向作者/读者索取更多资源

Three models (star-shaped, H-shaped, and comb-shaped polyethylenes) are used to study the crystallization behavior of low-density polyethylene at the molecular level by means of molecular dynamics simulation. It is shown that, for the three types of polyethylene corresponding to the models, the neighboring sequences of trans bonds firstly aggregate together to form local ordered domains, and then they coalesce to a lamellar structure. In the process, the branching sites are rejected to the fold surface gradually. The driving force for the relaxation process is the attractive van der Waals interaction between the chain segments. Furthermore, it is found that the number of the branch sites and the length of the branch play an important role in determining the formation of the lamellar structure. The longer the length of the branch and the fewer the number of the branch sites. the more perfect lamellar structure can be formed. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据