4.5 Article

Mechanism of charge recombination in dye-sensitized nanocrystalline semiconductors: Random flight model

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 106, 期 17, 页码 4356-4363

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp012957+

关键词

-

向作者/读者索取更多资源

The trap-filling effect on the kinetics of charge recombination in dye-sensitized TiO2 nanoparticles is discussed on the basis of the random flight model. The model assumes that electrons move between trap sites on the surface of a nanoparticle by diffusion in the conduction band. After an electron is thermally detrapped into the conduction band, it can subsequently be captured by any empty trap or recombine with a cation within the same nanoparticle. This is an alternative to the nearest-neighbor random walk. A reasonable agreement with recent experimental data is observed. It is concluded, in accord with the previous studies, that the reaction is governed by the energy redistribution of trapped electrons rather than by spatial diffusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据