4.7 Article

The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 318, 期 3, 页码 733-747

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-2836(02)00135-3

关键词

CCMV; association energies; icosahedral virus; normal mode; swelling phenomenon

资金

  1. NCRR NIH HHS [RR12255] Funding Source: Medline

向作者/读者索取更多资源

Normal mode analysis based on a simplified energy function was used to study the swelling process of the icosahedral virus, cowpea chlorotic mottle virus (CCMV). Native state virus particles (coat proteins) of this T = 3 icosahedral virus have been shown to undergo a large conformational change to a swollen state when metal ions are removed or the pH is raised. A normal mode analysis based on the native state capsid showed one preferential direction, a breathing mode, that explains the majority of the structural rearrangement necessary to bring the native structure close to the swollen state. From the native form of CCMV, the structure can be displaced along the direction of a single breathing mode by different amounts to create several candidate swollen structures and a putative pathway for virus expansion. The R-factor between these predicted swollen capsid structures and experimental electron density from cryoelectron microscopy (cryo-EM) measurements is then calculated to indicate how well each structure satisfies the experimental measurements on the swollen capsid state. A decrease of the crystallographic R-factor value from similar to72% to similar to49% was observed for these simple incremental displacements along the breathing mode. The simultaneous displacement of the native structure along other relevant (symmetric, non-degenerate) modes produce a structure with an R-factor of 45%, which is further reduced to 43.9% after minimization: a value in good accord with models based on the EM data at 28 Angstrom resolution. Based on the incrementally expanded structures, a pathway for the swelling process has been proposed. Analysis of the intermediate structures along this pathway indicates a significant loss of interactions at the quasi-3-fold interfaces occurs in the initial stages of the swelling process and this serves as a trigger for the compact to swollen transition. Furthermore, the pH dependent swelling appears to be triggered by the titration of a single residue with an anomalous pK(a) value in the unswollen particle. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据