4.6 Article

Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 18, 页码 15566-15572

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M201266200

关键词

-

向作者/读者索取更多资源

Telomerase, a ribonucleoprotein acting as a reverse transcriptase, has been identified as a target for cancer drug discovery. The synthetic, non-nucleosidic compound, BIBR1532, is a potent and selective telomerase inhibitor capable of inducing senescence in human cancer cells (1). In the present study, the mode of drug action was characterized. BIBR1532 inhibits the native and recombinant human telomerase, comprising the human telomerase reverse transcriptase and human telomerase RNA components, with similar potency primarily by interfering with the processivity of the enzyme. Enzyme-kinetic experiments show that BIBR1532 is a mixed-type non-competitive inhibitor and suggest a drug binding site distinct from the sites for deoxyribonucleotides and the DNA primer, respectively. Thus, BIBR1532 defines a novel class of telomerase inhibitor with mechanistic similarities to non-nucleosidic inhibitors of HIV1 reverse transcriptase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据