4.6 Article

Insulin-like growth factor I induces MDM2-dependent degradation of p53 via the p38 MAPK pathway in response to DNA damage

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 18, 页码 15600-15606

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111142200

关键词

-

向作者/读者索取更多资源

In many tissues, the insulin-like growth factor I (IGF-I) receptor (IGF-IR) is known to functionally oppose apoptosis. Recently, we demonstrated a direct role for the IGF-IR in the rescue of DNA-damaged fibroblasts by activating a DNA repair pathway (Heron-Milhavet, L., Karas, M., Goldsmith, C. M., Baum, B. J., and LeRoith, D. (2001) J. Biol. Chem. 276, 18185-18192). p53 is a nuclear transcription factor that can block progression of the cell cycle, modulate DNA repair, and trigger apoptosis. In this work, we tested the effect of IGF-I on the regulation of the p53 signaling cascade. The DNA-damaging agent 4-nitroquinoline 1-oxide was applied to NIH-3T3 cells overexpressing normal IGF-IRs (NWTb3 cells). We showed that after 4-nitroquinoline 1-oxide-induced DNA damage, IGF-I induced exclusion of the p53 protein from the nucleus and led to its degradation in the cytoplasm, whereas p53 mRNA was unaffected. Degradation of the p53 protein was associated with an increase in MDM2, an upstream modulator of the half-life and activity of the p53 protein. p53 degradation was also associated with down-regulation of p21. We further showed that the effects of IGF-I on mdm2 transcription and on MDM2/p19 ARF association were mediated by the p38 MAPK pathway. In conclusion, we describe a novel role for IGF-I in the regulation of the MDM2/p53/p21 signaling pathway during DNA damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据