4.6 Article

Functional studies on recombinant domains of Mac-2-binding protein

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 18, 页码 15690-15696

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M200386200

关键词

-

向作者/读者索取更多资源

Mac-2-binding protein (M2BP) is a secreted glycoprotein suggested to have a role in host defense. It forms linear and ring-shaped oligomers, with each ring segment being composed of two monomers. We have produced recombinant human M2BP fragments comprising domains 1 and 2 (M2BP-1,2) and domains 3 and 4 (M2BP-3,4) in 293 human kidney cells to characterize structural and functional properties of M2BP. Both fragments were obtained in a native and glycosylated form, as analyzed by CD spectroscopy, trypsin susceptibility, and enzymatic deglycosylation. These results strongly suggest that both fragments are autonomous folding units. All three potential N-glycosylation sites in M2BP-1,2 and all four in M2BP-3,4 were found to be occupied. M2BP-1,2 expressed in tunicamycin-treated cells contained no glycosyl residues, indicating that O-glycosylation is not occurring. Ultracentrifugation revealed that M2BP-1,2 is homogeneously dimeric in the nanomolar range reflecting the properties of intact M2BP. Domain 2 (BTB/POZ domain) is thus identified as the dimerization domain of M2BP, because it has been formerly shown that recombinant domain 1 is monomeric. M2BP-3,4 showed a concentration-dependent self-association, and aggregates of different size and shape were shown by electron microscopy. In contrast to this irregular aggregation of M2BP-3,4, it has been formerly shown that a fragment comprising domains 2-4 still has the ability to form ring-like structures, although the rings are protein-filled, and thus domain 2 appears to be indispensable for ring formation. Solid phase assays showed that M2BP-3,4 contains binding sites for galectin-3, nidogen, and collagens V and VI, whereas M2BP-1,2 is inactive in binding. Both fragments showed no cell adhesive activity in contrast to native M2BP, suggesting that a concerted binding action and/or multivalent interactions of rings are necessary for cell attachment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据