4.6 Article

Analysis of tryptophanase operon expression in vitro -: Accumulation of TnaC-peptidyl-tRNA in a release factor 2-depleted S-30 extract prevents Rho factor action, simulating induction

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 19, 页码 17095-17100

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M201213200

关键词

-

向作者/读者索取更多资源

Expression of the tryptophanase (tna) operon in Escherichia coli is regulated by catabolite repression and tryptophan-induced transcription antitermination. The key feature of this antitermination mechanism has been shown to be the retention of uncleaved TnaC-peptidyl-tRNA in the translating ribosome. This ribosome remains stalled at the tna stop codon and blocks the access of Rho factor to the tna transcript, thereby preventing transcription termination. In normal S-30 preparations, synthesis of a TnaC peptide containing arginine instead of tryptophan at position 12 (Arg(12)-TnaC) was shown to be insensitive to added tryptophan, i.e. Arg(12)-TnaC-peptidyl-tRNA was cleaved, and there was normal Rho-dependent transcription termination. When the S-30 extract used was depleted of release factor 2, Arg(12)-TnaC-tRNA(Pro) was accumulated in the absence or presence of added tryptophan. Under these conditions the accumulation of Arg(12)-TnaC-tRNA(Pro) prevented Rho-dependent transcription termination, mimicking normal induction. Using a minimal in vitro transcription system consisting of a tna template, RNA polymerase, and Rho, it was shown that RNA sequences immediately adjacent to the tnaC stop codon, the presumed boxA and rut sites, contributed most significantly to Rho-dependent termination. The tna boxA-like sequence appeared to serve as a segment of the Rho entry site, despite its likeness to the boxA element.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据