4.6 Article

Dislocations in diamond:: Electron energy-loss spectroscopy -: art. no. 205206

期刊

PHYSICAL REVIEW B
卷 65, 期 20, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.65.205206

关键词

-

向作者/读者索取更多资源

Electron energy-loss (EEL) spectroscopy performed near dislocation cores is one of the few experimental techniques that can yield valuable information about the electronic levels associated with dislocations. In this study, we present experimental observations of low-loss EEL spectroscopy acquired on grain boundary dislocations in a CVD diamond film. We interpret these results using ab initio calculations, where we model low-loss and core-excitation EEL spectra acquired on various dislocation cores in diamond and compare them with bulk spectra. We consider in particular the 60degrees glide, 60degrees shuffle, and 1/2 [110] screw dislocations, as well as the 30degrees and 90degrees partial glide dislocations and a 90degrees shuffle vacancy structure. The simulations show the absence of deep gap states for the more stable partial dislocations but there are characteristic changes to the low-loss EEL spectrum in the 6-12 eV region. Such changes are consistent with experimental spectra acquired from grain boundary dislocations found in boron doped CVD diamond.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据