4.7 Article

Laboratory gouge friction: Seismic-like slip weakening and secondary rate- and state-effects

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 29, 期 10, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2001GL014467

关键词

-

向作者/读者索取更多资源

[1] We investigate experimentally the frictional response of a thick sample of simulated fault gouge submitted to very high shear displacements (up to 40 m) in an annular simple shear apparatus (ACSA). The frictional strength of our granular material exhibits velocity-weakening consistent with classical rate- and state-dependent friction laws. The length scale involved in the latter phenomenon is d(c) = 100 mum. However, the evolution of friction is largely dominated by a significant slip-weakening active over decimetric distances (L = 0.5 m). Interestingly, these decimetric frictional length scales are quantitatively compatible with those estimated for natural faults. During shearing, a thin and highly-sheared layer emerges from the thick and slowly-deforming bulk of the sample. Because of the intermittent and non-local coupling observed between these two zones, we relate the large frictional length scales in our data to the slow structuring of the thick interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据