4.6 Article

Work functions of pristine and alkali-metal intercalated carbon nanotubes and bundles

期刊

PHYSICAL REVIEW B
卷 65, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.65.193401

关键词

-

向作者/读者索取更多资源

The work functions (WF's) of single-walled carbon nanotubes and bundles are studied using first-principles methods. For individual metallic tubes, the WF is independent of the chirality and increase slightly with tube diameter. For semiconducting tubes, the WF (as defined by the HOMO energy) decreases rapidly. The WF of nanotube bundles (similar to5 eV) shows no clear dependence on the tube size and chirality, slightly higher than individual tubes. For both metallic and semiconducting nanotubes, the WF decreases dramatically upon alkali-metal intercalation. The electronic states near the Fermi level are significantly modified and the metallic and semiconducting tube bundles become indistinguishable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据