4.5 Article

The 45 kDa collagen-binding fragment of fibronectin induces matrix metalloproteinase-13 synthesis by chondrocytes and aggrecan degradation by aggrecanases

期刊

BIOCHEMICAL JOURNAL
卷 364, 期 -, 页码 181-190

出版社

PORTLAND PRESS LTD
DOI: 10.1042/bj3640181

关键词

cartilage; catabolism; collagenase; neoepitope; stromelysin

向作者/读者索取更多资源

Fragments of fibronectin occur naturally in vivo and are increased in the synovial fluid of arthritis patients. We have studied the 45 kDa fragment (Fn-f45), representing the N-terminal collagen-binding domain of fibronectin, for its ability to modulate the expression of metalloproteinases by porcine articular chondrocytes in vitro. We report that stimulation of cultured chondrocytes, or cartilage explants, with Fn-f 45 increased the levels of matrix nietalloproteinase-13 (MMP-13; collagenase-3) released into the conditioned medium in a dose-dependent manner. Increased levels of MMP-13 were due to stimulation of MMP-13 synthesis, rather than release of MMP-13 from accumulated matrix stores. Fn-f 45 also stimulated the synthesis of MMP-3 (stromelysin-1) from cultured chondrocytes and cartilage cultures. The Fn-f 45-induced increase in MMP-3 and MMP-13 synthesis occurred via an interleukin I-independent mechanism, since the receptor antagonist of interleukin-1 was unable to block the increased synthesis. The gelatinases, MMP-2 and MMP-9, were not modulated by Fn-f 45 in these culture systems. Fn-f 45 also stimulated the release of aggrecan from cartilage explants into conditioned medium. Neoepitope antibodies specific for aggrecan fragments generated by MMPs or aggrecanases showed that the Fn-f 45-induced aggrecan loss was mediated by aggrecanases, and not by MMPs. Extracts of cultured cartilage contained elevated levels of the aggrecanase-derived ITEGE(373)-G1 domain, whereas levels of the matrix metalloproteinase-derived DIPEN341-G1 domain were unchanged. These studies show that Fn-f 45 can induce a catabolic phenotype in articular chondrocytes by up-regulating the expression of metalloproteinases specific for the degradation of collagen and aggrecan.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据