4.7 Article

A combined continuum/DSMC technique for multiscale analysis of microfluidic filters

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 178, 期 2, 页码 342-372

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/jcph.2002.7030

关键词

multiscale analysis; DSMC; finite cloud method; meshless methods; microfluidics

向作者/读者索取更多资源

A multiscale method that combines continuum fluid models with the direct simulation Monte Carlo (DSMC) method is presented. The continuum regions are treated by Stokes equations and a scattered point based finite cloud method is employed to solve the Stokes equations. The continuum and DSMC regions are combined by an overlapped Schwarz alternating method with Dirichlet-Dirichlet type boundary conditions. A scattered point interpolation scheme is developed to interpolate the solution between subdomains. The convergence characteristics of the multiscale approach are investigated in detail. Specifically, the dependence of convergence on the overlap size, the DSMC noise. and the number of time steps employed in the DSMC algorithm are studied. While the convergence depends weakly on the DSMC noise and the overlap size, the number of DSMC time steps simulated in each coupling iteration should he selected so that the total time steps, Simulated until convergence of the coupled process is close to the time constant of the DSMC subsystem. Steady-state analysis of microfluidic filters is studied in detail using the multiscale approach. The multiscale approach is also applied for the simulation of a membrane with an array of microfluidic filters and a dual-stage microfluidic device with an array of microfluidic filters for particle trapping and sorting. (C) 2002 Elsevier Science (USA).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据