4.6 Article

Macrophages inhibit Salmonella typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 21, 页码 18753-18762

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110649200

关键词

-

向作者/读者索取更多资源

Host responses during the later stages of Salmonella-macrophage interactions are critical to controlling infection but have not been well characterized. After 24 h of infection, nearly half of interferon-gamma-primed murine RAW 264.7 macrophage-like cells infected by Salmonella enterica serovar Typhimurium contained filamentous bacteria. Bacterial filamentation indicates a defect in completing replication and has been previously observed in bacteria responding to a variety of stresses. To understand whether macrophage gene expression was responsible for this effect on Salmonella Typhimurium replication, we used gene arrays to profile interferon-gamma-primed RAW 264.7 cell gene expression following infection. We observed an increase in MEK1 kinase mRNA at 8 h, an increase in MEK protein at 24 h, and measured phosphorylation of MEK's downstream target kinase, ERK1/2, throughout the 24-h infection period. Treatment of cells with MEK kinase inhibitors significantly reduced numbers of filamentous bacteria observed within macrophages after 24 h and increased the number of intracellular colony-forming units. Phagocyte NADPH oxidase inhibitors and antioxidants also significantly reduced bacterial filamentation. Either MEK kinase or phagocyte oxidase inhibitors could be added 4-8 h after infection and still significantly decrease bacterial filamentation. Oxidase activity appears to mediate bacterial filamentation in parallel to MEK kinase signaling, while inducible nitric-oxide synthase inhibitors had no significant effect on bacterial morphology. In summary, Salmonella Typhimurium infection of interferon-gamma-primed macrophages triggers a MEK kinase cascade at later infection times, and both MEK kinase and phagocyte NADPH oxidase activity impair bacterial replication. These two signaling pathways mediate a host bacteriostatic pathway and may play an important role in innate host defense against intracellular pathogens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据