4.6 Letter

Moving-wall-driven flows in nanofluidic systems

期刊

LANGMUIR
卷 18, 期 11, 页码 4186-4190

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la025533v

关键词

-

向作者/读者索取更多资源

We describe fluidic control in lipid nanotubes 50-150 nm in radius, conjugated with surface-immobilized unilamellar lipid bilayer vesicles (similar to5-25 mum in diameter). Transport in nanotubes was induced by continuously increasing the surface tension of one of the conjugated vesicles, for example, by ellipsoidal shape deformation using a pair of carbon microfibers controlled by micromanipulators as tweezers. The shape deformation resulted in a flow of membrane lipids toward the vesicle with the higher membrane tension; this lipid flow in turn moved the liquid column inside the nanotube through viscous coupling. Thus, micrometer-sized vesicles are used as a handle for controlling fluid flow inside nanometer-sized channels. We show transport and trapping of a single 30-nm-diameter carboxylate-modified latex particle inside a similar to100-nm-radius nanotube. Fluidic control in nanometer-sized channels using a moving wall provides pluglike liquid flows, offers a means for efficient routing and trapping of small molecules, polymers, and colloids, and offers new opportunities to study chemistry in confined spaces. Networks of nanotubes and vesicles might serve as a platform to build nanofluidic devices operating with single molecules and nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据