4.5 Article

Adhesion and wrapping in colloid-vesicle complexes

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 106, 期 21, 页码 5543-5552

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0138476

关键词

-

向作者/读者索取更多资源

We present a simple theoretical model for adsorption of colloidal particles onto vesicles. The contact energy of adhesion is balanced by the tension and curvature energies of the vesicle membrane under the constraint of fixed volume, with the geometry of the complex determined by a variational calculation. Physical observables, such as the degree of penetration or the membrane tension, are investigated as functions of colloidal size and adhesion, tension, and bending energies. We find various new (and discontinuous) transitions in the geometry of the complex compared to those from a description that neglects the curvature contribution. Particular emphasis is put on the transition from the partly to the fully wrapped state and on unbinding of the complex at weak adhesion energy or small colloidal size. The above model can be thought of as a phenomenological theory of the initial steps involved in biological endocytosis and aims toward an improved physical understanding of this process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据