3.8 Article Proceedings Paper

Cellulose acetate membranes for transdermal delivery of scopolamine base

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0928-4931(02)00018-8

关键词

cellulose acetate membranes; polyethylene glycol (PEG); transdermal delivery; scopolamine

向作者/读者索取更多资源

Transdermal delivery is one of the most convenient drug administration routes. In this study, the cellulose acetate membranes were cast with acetone as a solvent at 22 and 40 degreesC. Polyethylene glycol (PEG, MW 600) was used as a pore-forming agent. The in vitro release rates of scopolamine base as a model drug through the membranes were evaluated in phosphate buffer solution (PBS, pH 7.4) at 32 degreesC. The membranes were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal mechanical analysis (TMA) and thermogravimetric analysis (TGA). It was observed that the drug permeation through the cellulose acetate membranes was obviously affected by the incorporated PEG content and formed membrane morphology. There was no drug flux from the cellulose acetate membranes prepared without PEG. An increased PEG content resulted in a faster scopolamine release due to a more porous structure created. Both the membrane fabrication temperature and the PEG content can affect the thermal, mechanical and morphological properties of the resultant membranes. With the optimized fabrication conditions, linear in vitro release profiles of scopolamine over 3 days were achieved. The membranes developed would be useful for transdermal delivery of drugs. (C) 2002 Elsevier Science B.V All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据