4.6 Article

CX3CR1 tyrosine sulfation enhances fractalkine-induced cell adhesion

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 22, 页码 19418-19423

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M201396200

关键词

-

资金

  1. NIAMS NIH HHS [AR39162] Funding Source: Medline

向作者/读者索取更多资源

Fractalkine is a unique CX3C chemokine/mucin hybrid molecule that functions like selectins in inducing the capture of receptor-expressing cells. Because of the importance of tyrosine sulfation for ligand binding of the selectin ligand PSGLl, we tested the role of tyrosine sulfation for CX(3)CR1 function in cell adhesion. Tyrosine residues 14 and 22 in the N terminus of CX(3)CR1 were mutated to phenylalanine and stably expressed on K562 cells. Cells expressing CX(3)CR1-Y14F were competent in signal transduction but defective in capture by and firm adhesion to immobilized fractalkine under physiologic flow conditions. In static binding assays, CX(3)CR1-Y14F mutants had a 2-4-fold decreased affinity to fractalkine compared with wild type CX(3)CR1. By surface plasmon resonance measurements of fractalkine binding to biosensor chip-immobilized cell membranes, CX(3)CR1-Y14F mutants had a 100-fold decreased affinity to fractalkine. CX(3)CR1-expressing cell membranes treated with arylsulfatase to desulfate tyrosine residues also showed a 100-fold decreased affinity for fractalkine. Finally, synthesized, sulfated N-terminal CX(3)CR1 peptides immobilized on biosensor chips showed a higher affinity for fractalkine than non-sulfated peptides. Thus, we conclude that sulfation of tyrosine 14 enhances the function of CX(3)CR1 in cell capture and firm adhesion. Further, tyrosine sulfation may represent a general mechanism utilized by molecules that function in the rapid capture of circulating leukocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据