4.7 Article

Sources and sinks of carbon dioxide in a neighborhood of Mexico City

期刊

ATMOSPHERIC ENVIRONMENT
卷 97, 期 -, 页码 226-238

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2014.08.018

关键词

Carbon dioxide; Eddy covariance; Urban emissions of greenhouse gases; Emissions inventory; Carbon sequestration

资金

  1. National Institute of Ecology and Climate Change of Mexico through the Molina Center for Energy and the Environment

向作者/读者索取更多资源

Cities are the main contributors to the CO2 rise in the atmosphere. The CO2 released from the various emission sources is typically quantified by a bottom-up aggregation process that accounts for emission factors and fossil fuel consumption data. This approach does not consider the heterogeneity and variability of the urban emission sources, and error propagation can result in large uncertainties. These uncertainties might lead to unsound mitigation policies. Monitoring systems of greenhouse gases (GHG) based on independent methods are needed to validate the accuracy of the estimated emissions. In this context, direct measurements of CO2 fluxes that include all major and minor anthropogenic and natural sources and sinks from a specific district can be used to evaluate emission inventories. This study reports and compares CO2 fluxes measured directly using the eddy covariance (EC) method with emissions taken from the gridded local emissions inventory for the footprint covered by the EC flux system for a residential/commercial neighborhood of Mexico City. The flux measurements were conducted over 15-month period. No seasonal variability was found, but a clear diurnal pattern with morning and evening peaks in phase with the rush-hour traffic was observed. After adding contributions from human and soil respiration obtained by bottom-up approaches, and subtracting the CO2 sequestrated by vegetation calculated by applying biomass allometric equations and a growth predictive model to trees inventoried within the studied domain, results show that the current emissions inventory over-predicts 2.8 times the average daily flux measured on weekdays. Using traffic emissions data from a 2-year older inventory the difference decreased to 30%, suggesting that the traffic load for this part of the city is probably highly overestimated in the current emissions inventory. This study is expected to contribute to the verification capabilities of the GHG mitigation management of Mexico City, and to serve as a reference for other subtropical cities with similar urbanization patterns. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据