4.7 Article

Sensitivity of surface ozone over China to 2000-2050 global changes of climate and emissions

期刊

ATMOSPHERIC ENVIRONMENT
卷 75, 期 -, 页码 374-382

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2013.04.045

关键词

Climate change; Ozone; China; Emissions

资金

  1. National Science Foundation of China [41005060]
  2. Beijing Nova Program [Z121109002512052]
  3. US EPA STAR [R83428601, RD-83337001]

向作者/读者索取更多资源

We use a global chemical transport model (GEOS-Chem) driven by the GISS GCM to investigate the effect on China's surface ozone from 2000 to 2050 global changes in climate and anthropogenic emissions as projected by the IPCC A1B scenario, with a focus on the different response between East and West China where present-day anthropogenic emissions, natural conditions, and ozone source attributions differ significantly. Over East China, climate change will increase both surface ozone and the possibility of high ozone episodes, implying a significant 'climate change penalty' that can be attributed mainly to increasing biogenic emissions of volatile organic compounds (VOCs). Over West China on the other hand, climate change will decrease mean surface ozone as a result of an increased ozone destruction rate in low-NOx regimes, assuming constant stratosphere-troposphere exchange (STE) of ozone. Chinese emissions change in 2050 will enlarge the East-West ozone difference in China, but emissions change from the rest of the world (excluding China) will decrease it. Driven by climate change and emissions change in combination, nation-mean surface ozone will increase, whereas East-West ozone contrast will decrease. In the future climate, the sensitivity of surface ozone to a given change in Chinese emissions will decrease over West China due to the accelerated ozone destruction rate and reduced transport from East China, but increase over East China as a result of the coupling effect between anthropogenic NOx and biogenic VOCs. The latter result suggests that the emission controls over East China need to be more aggressive in future climate. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据