4.0 Article

Optimizing HAPEX™ topography influences osteoblast response

期刊

TISSUE ENGINEERING
卷 8, 期 3, 页码 453-467

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/107632702760184718

关键词

-

向作者/读者索取更多资源

HAPEX(TM) (hydroxyapatite-reinforeed polyethylene composite) is a second-generation orthopedic biomaterial designed as a bone analog material, which has found clinical success. The use of topography in cell engineering has been shown to affect cell attachment and subsequent response. Thus, by combining bioactivity and enhancing osteoblast response to the implant surface, improved tissue repair and implant life span may be achieved. In this study a primary human osteoblast-like cell model has been used to study the influence of surface topography and chemistry produced by three different production methods. Scanning electron microscopy, fluorescence microscopy, and confocal scanning laser microscopy have been used to study cell adhesion; tritiated thymidine uptake has been used to observe cell proliferation; and the reverse transcriptase-polymerase chain reaction and biochemical methods have been used to study phenotypic expression. Transmission electron microscopy has also been used to look at more long-term morphology. The results show that topography significantly influences cell response, and may be a means of enhancing bone apposition on HAPEX(TM).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据