4.8 Article

The branched-chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins

期刊

PLANT PHYSIOLOGY
卷 129, 期 2, 页码 540-550

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.001602

关键词

-

向作者/读者索取更多资源

Branched-chain amino acid transaminases (BCATs) play a crucial role in the metabolism of leucine, isoleucine, and valine. They catalyze the last step of the synthesis and/or the initial step of the degradation of this class of amino acids. In Arabidopsis, seven putative BCAT genes are identified by their similarity to their counterparts from other organisms. We have now cloned the respective cDNA sequences of six of these genes. The deduced amino acid sequences show between 47.5% and 84.1%, identitv to each other and about 30%, to the homologous enzymes from yeast (Saccharomyces cerevisiae) and mammals. In addition, many amino acids in crucial positions as determined by crystallographic analyses of BCATs from Escherichia coli and human (Homo sapiens) are conserved in the AtBCATs. Complementation of a yeast Deltabat1/Deltabat2 double knockout strain revealed that five AtBCATs can function as BCATs in vivo. Transient expression of BCAT:green fluorescent protein fusion proteins in tobacco (Nicotiana tabacum) protoplasts shows that three isoenzymes are imported into chloroplasts (AtBCAT-2, -3, and -5), whereas a single enzyme is directed into mitochondria (AtBCAT-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据