4.2 Article

Nerve growth factor enhances neurotransmitter release from PC12 cells by increasing Ca2+-responsible secretory vesicles through the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase

期刊

JOURNAL OF BIOCHEMISTRY
卷 131, 期 6, 页码 887-894

出版社

OXFORD UNIV PRESS
DOI: 10.1093/oxfordjournals.jbchem.a003179

关键词

NGF; neurotransmitter release; MAP kinase; PI 3-kinase; TrkA

向作者/读者索取更多资源

Neurotrophins play important roles in the differentiation and survival of neurons during development, and in the regulation of synaptic transmission in adult brain. Brief treatment with nerve growth factor (NGF) enhances depolarization and ionomycin-induced dopamine and acetylcholine release from PC12 cells. The enhancing effect appears very quickly and reaches a plateau 10-15 min after application. NGF also enhances hypertonic solution-induced dopamine release, and increases the amount of dopamine released from membrane-permeabilized PC12 cells in the absence of MgATP, suggesting that NGF enhances neurotransmitter release by increasing the number of Ca2+-responsive secretory vesicles. The activation of Trk receptors is essential for NGF action, since K252a abolishes the NGF-induced potentiation of dopamine release and brain-derived neurotrophic factor enhanced ionomycin-induced release only in TrkB-expressing cells. NGF-mediated potentiation of dopamine release is completely abolished by wortmannin, a PI 3-kinase inhibitor, and by U0126 and PD98059, MAP kinase kinase inhibitors, indicating that the activation of PI 3-kinase and MAP kinase pathways is essential for NGF action. These findings suggest that NGF regulates neurotransmitter release through the activation of TrkA receptors, possibly by increasing the number of secretory vesicles in a readily releasable pool.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据