4.6 Article

Impaired endothelium-mediated relaxation in isolated cerebral arteries from insulin-resistant rats

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.01124.2001

关键词

middle cerebral artery; bradykinin; A23187; nitric oxide; cyclooxygenase

资金

  1. NHLBI NIH HHS [HL-50587, HL-46558, HL-30260, HL-66074] Funding Source: Medline

向作者/读者索取更多资源

Insulin resistance (IR) impairs vascular responses in peripheral arteries. However, the effects of IR on cerebrovascular control mechanisms are completely unexplored. We examined the vascular function of isolated middle cerebral arteries (MCAs) from fructose-fed IR and control rats. Endothelium-dependent vasodilation elicited by bradykinin (BK) was reduced in IR compared with control MCAs. Maximal dilation to BK (10(-6) M) was 38 +/- 3% (n = 13) in control and 19 +/- 3% (n = 10) in IR arteries (P < 0.01). N-ω-nitro-L-arginine methyl ester (L-NAME; 10 μM) decreased responses to BK in control arteries by ∼65% and inhibited the already reduced responses completely in IR MCAs. Indomethacin (10 μM) reduced relaxation to BK in control MCAs by ∼40% but was largely ineffective in IR arteries. Combined L-NAME and indomethacin treatments eliminated the BK-induced dilation in both groups. Similarly to BK, endothelium-mediated and mainly cyclooxygenase (COX)-dependent dilation to calcium ionophore A23187 was reduced in IR arteries compared with controls. In contrast, vascular relaxation to sodium nitroprusside was similar between the IR and control groups. These findings demonstrate that endothelium-dependent dilation in cerebral arteries is impaired in IR primarily because of a defect of the COX-mediated pathways. In contrast, nitric oxide-mediated dilation remains intact in IR arteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据