4.7 Article

Comparative expression of two alpha class glutathione S-transferases in human adult and prenatal liver tissues

期刊

BIOCHEMICAL PHARMACOLOGY
卷 63, 期 11, 页码 2025-2036

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0006-2952(02)01017-1

关键词

northern analysis; prenatal liver; mitochondria; glutathione S-transferases; 4-hydroxynonenal

资金

  1. NIEHS NIH HHS [R03-ES09360, R01-ES09427] Funding Source: Medline

向作者/读者索取更多资源

The ability of the fetus to detoxify transplacental drugs and chemicals can be a critical determinant of teratogenesis and developmental toxicity. Developmentally regulated expression of alpha class glutathione S-transferases (GSTs) is of particular interest, since these isozymes have high activity toward peroxidative byproducts of oxidative injury that are linked to teratogenesis. The present study was initiated to examine the expression and catalytic activities of alpha class GST isozymes in human prenatal liver. Northern analysis demonstrated the presence of hGSTA1 and/or A2 (hGSTA1/2) and hGSTA4 steady-state mRNAs in second trimester prenatal livers. Western blotting of prenatal liver proteins provided corroborating evidence via detection of an hGSTA1/2-reactive protein in both cytosol and mitochondria and of hGSTA4-4-reactive protein in mitochondria alone. Catalytic studies demonstrated that prenatal liver cytosolic GSTs were active toward 1-chloro-2,4-dinitrobenzene (a general GST reference substrate), delta(5)-androstene-3,17-dione (relatively specific for hGSTAI-1), and 4-hydroxynonenal, a highly mutagenic alpha,beta-unsaturated aldehyde produced during oxidative damage and a substrate for hGSTA4-4. Total GSH-peroxidase and GST-dependent peroxidase activities were 9- and 18-fold higher, respectively, in adult liver than in prenatal liver. Multiple tissue array analyses demonstrated considerable tissue-specific and developmental variation in GST mRNA expression. In summary, our results demonstrate the presence of two important alpha class GSTs in second trimester human prenatal tissues, and indicate that mitochondrial targeting of GST may represent an important pathway for removal of cytotoxic products in prenatal liver. Furthermore, the relatively inefficient prenatal reduction of hydroperoxides may underlie an increased susceptibility to maternally transferred pro-oxidant drugs and chemicals. (C) 2002 Elsevier Science Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据