4.7 Letter

Symmetry breaking to a rotating wave in a lid-driven cylinder with a free surface: Experimental observation

期刊

PHYSICS OF FLUIDS
卷 14, 期 6, 页码 L29-L32

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1471912

关键词

-

向作者/读者索取更多资源

A systematic experimental investigation of the flow in an open cylinder, driven by the constant rotation of the bottom endwall, shows that axisymmetry is spontaneously broken via a supercritical Hopf bifurcation to a rotating wave with azimuthal wave number 4. The physical mechanism responsible for the symmetry breaking is shown to be due to the instability of the shear layer that is produced by the boundary layer on the bottom rotating endwall being turned into the interior by the stationary sidewall. Comparison with other experiments and numerical studies (restricted to axisymmetric subspaces) sheds new light on disparate observations in the literature and helps distinguish between spontaneous and forced (via imperfections) symmetry breaking. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据