4.7 Article

Toxicological characterization of diesel engine emissions using biodiesel and a closed soot filter

期刊

ATMOSPHERIC ENVIRONMENT
卷 45, 期 8, 页码 1574-1580

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2010.12.040

关键词

Biodiesel; Diesel particulates filter; Engine emission; Mutagenicity; Oxidative stress

资金

  1. Dutch ministry VROM
  2. internal TNO funds

向作者/读者索取更多资源

This study was designed to determine the toxicity (oxidative stress, cytotoxicity, genotoxicity) in extracts of combustion aerosols. A typical Euro Ill heavy truck engine was tested over the European Transient Cycle with three different fuels: conventional diesel EN590, biodiesel EN14214 as 8100 and blends with conventional diesel (B5, 810, and 1320) and pure plant oil DIN51605 (PPO). In addition application of a (wall flow) diesel particulate filter (DPF) with conventional diesel EN590 was tested. The use of B100 or PPO as a fuel or the DPF reduced particulate matter (PM) mass and numbers over 80%. Similarly, significant reduction in the emission of chemical constituents (EC 90%, (oxy)-PAH 70%) were achieved. No significant changes in nitro-PAH were observed. The use of B100 or PPO led to a NOx increase of about 30%, and no increase for DPF application. The effects of B100, PPO and the DPF on the biological test results vary strongly from positive to negative depending on the biological end point. The oxidative potential, measured via the DDT assay, of the B100 and PPO or DPF emissions is reduced by 95%. The cytotoxicity is increased for B100 by 200%. The measured mutagenicity, using the Ames assay test with TA98 and YG1024 strains of Salmonella typhimurium indicate a dose response for the nitroarene sensitive YG1024 strain for B100 and PPO (fold induction: 1.6). In summary B100 and PPO have good potential for the use as a second generation biofuel resulting in lower PM mass, similar to application of a DPF, but caution should be made due to potential increased toxicity. Besides regulation via mass, the biological reactivity of exhaust emissions of new (bio)fuels and application of new technologies, needs attention. The different responses of different biological tests as well as differences in results between test laboratories underline the need for harmonization of test methods and international cooperation. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据