4.4 Article

Optimized single-beam dark optical trap

出版社

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.19.001233

关键词

-

类别

向作者/读者索取更多资源

We propose a new scheme for constructing a single-beam dark optical trap that minimizes light-induced perturbations of the trapped atoms. The proposed scheme optimizes the trap depth for given trapping laser power and detuning by creating a light envelope with (a) an almost minimal surface area for a given volume and (b) the minimal wall thickness that is allowed by diffraction. The stiffness of the trap's walls, combined with the large detuning allowed by the efficient distribution of light intensity, yields a low spontaneous photon scattering rate for the trapped atoms. Our trap also optimizes the loading efficiency by maximizing the geometrical overlap between a magneto-optical trap and the dipole trap. We demonstrate this new scheme by generating the proposed light distribution of a single-beam dark trap with a trap depth that is similar to33 times larger than that of existing blue-detuned traps and similar to13 times larger than that of a red-detuned trap with the same diameter, detuning, and laser power. Trapped atoms are predicted to have a decoherence rate that is >200 times smaller than in existing single-beam dark traps and similar to1800 times smaller than in a red-detuned trap with the same diameter, depth, and laser power. (C) 2002 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据