4.4 Article

SitABCD is the alkaline Mn2+ transporter of Salmonella enterica serovar typhimurium

期刊

JOURNAL OF BACTERIOLOGY
卷 184, 期 12, 页码 3159-3166

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.184.12.3159-3166.2002

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM061748, GM61748] Funding Source: Medline

向作者/读者索取更多资源

MntH, a bacterial homolog of the mammalian natural resistance-associated macrophage protein 1 (Nramp1), is a primary Mn2+ transporter of Salmonella enterica serovar Typhimurium and Escherichia coli. S. enterica serovar Typhimurium MntH expression is important for full virulence; however, strains carrying an mntH deletion are only partially attenuated and display no obvious signs of Mn2+ deficiency. We noted that promoter sequences for mntH and for the putative Fe2+ transporter sitABCD appeared to have the same regulatory element responsive to Mn2+ and so hypothesized that sitABCD could transport Mn2+ with high affinity. We have now characterized transport by SitABCD in S. enterica serovar Typhimurium using Mn-54(2+) and Fe-55(2+) and compared its properties to those of MntH. SitABCD mediates the influx of Mn2+ with an apparent affinity (K-a) identical to that of MntH, 0.1 muM. It also transports Fe2+ but with a K-a 30 to 100 times lower, 3 to 10 muM. Inhibition of Mn-54(2+) transport by Fe2+ and of Fe-55(2+) transport by Mn2+ gave inhibition constants comparable to each cation's K-a for influx. Since micromolar concentrations of free Fe2+ are improbable in a biological system, we conclude that SitABCD functions physiologically as a Mn2+ transporter. The cation inhibition profiles of SitABCD and MntH are surprisingly similar for two structurally and energetically unrelated transporters, with a Cd2+ K-i of approximate to1 muM and a Co2+ K-i of approximate to20 muM and with Ni2+, Cu2+, and Fe3+ inhibiting both transporters only at concentrations of >0.1 mM. The one difference is that Zn2+ exhibits potent inhibition of SitABCD (K-i = 1 to 3 muM) but inhibits MntH weakly (K-i > 50 muM). We have previously shown that MntH transports Mn2+ Most effectively under acidic conditions. In sharp contrast, SitABCD has almost no transport capacity at acid pHs and optimally transports Mn2+ at slightly alkaline pHs. Overall, coupled with evidence that each transporter is multiply but distinctly regulated at the transcriptional level, the distinct transport properties of MntH versus SitABCD suggest that each transporter may be specialized for Mn2+ uptake in different physiological environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据