4.7 Article

Size-resolved aerosol chemical composition over the Italian Peninsula during typical summer and winter conditions

期刊

ATMOSPHERIC ENVIRONMENT
卷 44, 期 39, 页码 5269-5278

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2010.08.008

关键词

Size-segregated; Aerosol; Chemical composition; Italy; Po valley

资金

  1. MIUR-AEROCLOUDS (Study of Direct and Indirect Aerosol Effects on Climate)
  2. ACCENT (Atmospheric Composition Change the European Network of Excellence)
  3. PIAS-PUFCP (Progetto Interdipartimentale Ambiente e Salute progetto pilota Particolato UltraFine ed effetti CardioPolmonari)

向作者/读者索取更多资源

In the frame of the MIUR-AEROCLOUDS project (Study of Direct and Indirect Aerosol Effects on Climate), night-time and daytime size-segregated aerosol samples were collected concurrently at five different sites (near-city, urban, rural, marine and mountain background sites). The paper reports on the daily evolution of the main aerosol chemical characteristics as a function of particle size in different environments over the Italian Peninsula, spanning from the Po Valley to the south Tyrrhenian coast. Two 4-day intensive observation periods (IOPs) were undertaken in July 2007 and February 2008, under meteorological conditions typical of the summer and winter climate for Italy. In the summer IOP, under stable atmospheric conditions, at the low-altitude continental sites the diurnal evolution of the planetary boundary layer (PBL), induces an atmospheric dilution effect driving the particulate matter (PM) concentrations, while, at the mountain site, it determines the upward motion of polluted air masses from the Po Valley PBL in daytime. The fine fraction was dominated by ammonium salts and carbonaceous matter (water-soluble organic matter, WSOM, and water-insoluble carbonaceous matter, WINCM). High concentrations of ammonium sulphate and WSOM due to enhanced photochemical activity constituted the background aerosol composition over the whole country, whereas, ammonium nitrate and WINCM were more associated to local emissions (e.g. urban site with concentrations peaking in the finest size range due to strong local traffic-related sources of ultrafine particles). During the winter IOP in the Po Valley, the shallow PBL depths and low wind velocity, especially at night, favoured the condensation of semi-volatile species (i.e. organic matter and ammonium nitrate), causing the high fine PM concentration observed at ground level. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据