4.5 Article

Adhesion-dependent interactions between eosinophils and cholinergic nerves

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00278.2001

关键词

acetylcholine; hyperreactivity; reactive oxygen species

向作者/读者索取更多资源

Eosinophils adhere to airway cholinergic nerves and influence nerve cell function by releasing granule proteins onto inhibitory neuronal M-2 muscarinic receptors. This study investigated the mechanism of eosinophil degranulation by cholinergic nerves. Eosinophils were cocultured with IMR32 cholinergic nerve cells, and eosinophil peroxidase (EPO) or leukotriene C-4 (LTC4) release was measured. Coculture of eosinophils with nerves significantly increased EPO and LTC4 release compared with eosinophils alone. IMR32 cells, like parasympathetic nerves, express the adhesion molecules vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 (ICAM-1). Inhibition of these adhesion molecules alone or in combination significantly inhibited eosinophil degranulation. IMR32 cells also significantly augmented the eosinophil degranulation produced by formyl-Met-Leu-Phe. Eosinophil adhesion to IMR32 cells resulted in an ICAM-1-mediated production of reactive oxygen species via a neuronal NADPH oxidase, inhibition of which significantly inhibited eosinophil degranulation. Additionally, eosinophil adhesion increased the release of ACh from IMR32 cells. These neuroinflammatory cell interactions may be relevant in a variety of inflammatory and neurological conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据