4.5 Article

Particle image velocimetry assessment of stent design influence on intra-aneurysmal flow

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 30, 期 6, 页码 768-777

出版社

BIOMEDICAL ENGINEERING SOC AMER INST PHYSICS
DOI: 10.1114/1.1495867

关键词

hemodynamics; intracranial aneurysms; stents; endovascular; cerebral circulation

向作者/读者索取更多资源

Endovascular stenting appears to be an appealing treatment modality to selected complex intracranial aneurysms. However, stents currently used for endovascular treatment are not specifically designed for the cerebrovasculature. Stent parameters, such as porosity and filament size, have to be carefully optimized for long-term successful treatment. We investigated the influence of the stent filament size on the intra-aneurysmal flow dynamics in a sidewall aneurysm model in vitro. Three helical stents with 76% porosity but different filament sizes of 178, 153, and 127 mum were studied using particle image velocimetry. Twenty-four pulsatile flow conditions were investigated. The results show that stenting significantly reduces intra-aneurysmal vorticity and the mean circulation inside the aneurysm is reduced to less than 3% of its value before stenting. For constant porosity, a further reduction of the mean circulation, up to 30% can be obtained by reducing the filament diameter. For a constant Womersley number, this further reduction is accentuated with increase in the peak Reynolds number. Further reduction in the mean circulation inside the aneurysm was not achieved for the 127 Am stent. With further reduction in filament diameter, the helical stent filaments positioned against the aneurysm neck started wavering with the flow transferring added momentum into the aneurysm. For stents of smaller filament diameter, a supporting ultrastructure is required. (C) 2002 Biomedical Engineering Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据