4.0 Article

Synergistic effects of physical and chemical guidance cues on neurite alignment and outgrowth on biodegradable polymer substrates

期刊

TISSUE ENGINEERING
卷 8, 期 3, 页码 367-378

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/107632702760184646

关键词

-

向作者/读者索取更多资源

This article demonstrates that directional outgrowth of neurites is promoted by applying a combination of physical and chemical cues to biodegradable polymer substrates. Films of poly-D,L-lactic acid and poly(lactide-co-glycolide) were micropatterned to form grooves on substrate surfaces, using novel indirect transfer techniques developed specifically for biodegradable polymers that cannot be micropatterned directly. Laminin was selectively adsorbed in the grooves. Whole and dissociated dorsal root ganglia were seeded on the substrates and neurite outgrowth and alignment along the microgrooves were measured. The microgrooves provide physical guidance, whereas laminin provides chemical cues to the neurons. The groove depth and spacing were found to significantly influence neurite alignment. The presence of laminin was found to promote neurite adhesion and outgrowth along the grooves. Using a combination of optimized physical and chemical cues, excellent spatial control of directional neurite outgrowth, with up to 95% alignment of neurites, was obtained. The synergistic effect of physical and chemical guidance cues was found to be more effective than individual cues in promoting directional outgrowth of neurites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据