4.5 Article

Newton-Krylov algorithm for aerodynamic design using the Navier-Stokes equations

期刊

AIAA JOURNAL
卷 40, 期 6, 页码 1146-1154

出版社

AMER INST AERONAUT ASTRONAUT
DOI: 10.2514/2.1764

关键词

-

向作者/读者索取更多资源

A Newton-Krylov, algorithm is presented for two-dimensional Navier-Stokes aerodynamic shape optimization problems. The algorithm is applied to both the discrete-adjoint and the discrete flow-sensitivity methods for calculating the gradient of the objective function. The adjoint and flow-sensitivity equations are solved using a novel preconditioned generalized minimum residual (GMRES) strategy. Together with a complete linearization of the discretized Navier-Stokes and turbulence model equations, this results in an accurate and efficient evaluation of the gradient. Furthermore, fast flow solutions are obtained using the same preconditioned GMRES strategy in conjunction with an inexact Newton approach. The performance of the new algorithm is demonstrated for several design examples, including inverse design, lift-constrained drag minimization, lift enhancement. and maximization of lift-to-drag ratio. In all examples, the norm of the gradient is reduced by several orders of magnitude, indicating that a local minimum has been obtained. By the use of the adjoint method, the gradient is obtained in from one-fifth to one-half of the time required to converge a How solution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据