4.5 Article Proceedings Paper

A biogeochemistry-based dynamic vegetation model and its application along a moisture gradient in the continental United States

期刊

JOURNAL OF VEGETATION SCIENCE
卷 13, 期 3, 页码 369-382

出版社

WILEY
DOI: 10.1111/j.1654-1103.2002.tb02061.x

关键词

biogeochemistry; biogeography; plant functional type; TEM-LPJ; VEMAP

向作者/读者索取更多资源

We develop and evaluate a large-scale dynamic vegetation model, TEM-LPJ, which considers interactions among water, light and nitrogen in simulating ecosystem function and structure. We parameterized the model for three plant functional types (PFTs): a temperate deciduous forest, a temperate coniferous forest, and a temperate C-3 grassland. Model parameters were determined using data from forest stands at the Harvard Forest in Massachusetts. Applications of the model reasonably simulated stand development over 120 yr for Populus tremuloides in Wisconsin and for Pinus elliottii in Florida. Our evaluation of tree-grass interactions simulated by the model indicated that competition for light led to dominance by the deciduous forest PFT in moist regions of eastern United States and that water competition led to dominance by the grass PFT in dry regions of the central United States. Along a moisture transect at 41.5degrees N in the eastern United States, simulations by TEM-LPJ reproduced the composition of potential temperate deciduous forest, temperate savanna, and C3 grassland located along the transect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据