4.0 Article

Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor

期刊

TISSUE ENGINEERING
卷 8, 期 3, 页码 499-513

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/107632702760184745

关键词

-

资金

  1. NCI NIH HHS [CA 76541] Funding Source: Medline

向作者/读者索取更多资源

We have previously described the design and operation of a microfabricated bioreactor that supports perfused 3D culture of liver cells and facilitates evolution of tissue-like morphological structures. Here, we describe the functional viability of cells maintained in this microarray bioreactor and examine the influence of different seeding protocols on the evolution of structure and function in comparison with static culture. Primary rat hepatocytes were seeded into the perfusion reactors either as single-cell suspensions immediately after isolation or as spheroidal aggregates formed over a 2- to 3-day period. Initial studies in which cells were cultured for 7 days postisolation revealed significantly greater functional activity and morphological stability of cells that were preaggregated for up to 3 days before seeding in the reactor, compared with direct seeding of single cells. Total albumin secretion and urea genesis rates in single-cell reactor cultures declined significantly during this initial culture period while remaining constant in preaggregated reactor cultures. Longer term studies indicate that rates of albumin secretion and urea genesis are maintained at constant levels through 15 days postisolation. These metabolic rates are an order of magnitude higher than observed for the same preaggregated structures cultured statically with comparable medium ratio and exchange conditions. The metabolic function data are supported by light microscopy images showing viable tissue structures, and electron microscopy images that reveal tight junctions, glycogen storage, and bile canaliculi.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据