4.7 Article

The curvelet transform for image denoising

期刊

IEEE TRANSACTIONS ON IMAGE PROCESSING
卷 11, 期 6, 页码 670-684

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIP.2002.1014998

关键词

curvelets; discrete wavelet transform; FFT; filtering; FWT; radon transform; ridgelets; thresholding rules; wavelets

向作者/读者索取更多资源

We describe approximate digital implementations of two new mathematical transforms, namely. the ridgelet transform [2] and the curvelet transform [6], [5]. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A central tool is Fourier-domain computation of an approximate digital Radon transform. We introduce a very simple interpolation in Fourier space which takes Cartesian samples and yields samples on a rectopolar grid, which is a pseudo-polar sampling set based on a concentric squares geometry. Despite the crudeness of our interpolation, the visual performance is surprisingly good. Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have compact support in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, and implements curvelet subbands using a filter bank of a trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the curvelet coefficients is very competitive with state of the art techniques based on wavelets, including thresholding of decimated or undecimated wavelet transforms and also including tree-based Bayesian posterior mean methods. Moreover, the curvelet reconstructions exhibit higher perceptual quality than wavelet-based reconstructions, offering visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging agreement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据