4.7 Article

Bridged double percolation in conductive polymer composites: an electrical conductivity, morphology and mechanical property study

期刊

POLYMER
卷 43, 期 13, 页码 3717-3725

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0032-3861(02)00180-5

关键词

polyethylene; conductive polymer composites; graphite

向作者/读者索取更多资源

Conductive polymer composites are ubiquitous in technological applications and constitute an ongoing topic of tremendous commercial interest. Strategies developed to improve the level of electrical conductivity achieved at a given filler concentration have relied on double-percolated networks induced by immiscible polymer blends, as well as mixtures of fillers in a single polymer matrix, to enhance interparticle connectivity. In this work, we combine these two strategies by examining quaternary composites consisting of high-density polyethylene (HDPE), ultrahigh molecular weight polyethylene (UHMWPE), graphite (G) and carbon fiber (CF). On the basis of our previous findings, we examine the electrical conductivity, morphology, thermal signature and mechanical properties of HDPE/UHMWPE/G systems that show evidence of double percolation. Upon addition of CF, tremendous increases in conductivity are realized. The mechanism by which this increase occurs is termed bridged double percolation to reflect the role of CF in spanning non-conductive regions and enhancing the continuity of conductive pathways. At CF concentrations above the percolation threshold concentration, addition of G promotes increases in conductivity and dynamic storage modulus in which the conductivity increases exponentially with increasing modulus. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据