4.5 Review

Mesangial cell protein kinase C isozyme activation in the diabetic milieu

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
卷 282, 期 6, 页码 F975-F980

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00014.2002

关键词

diacylglycerol; polyol pathway; collagen IV; reactive oxygen species; endothelin-1

向作者/读者索取更多资源

High-glucose-induced activation of mesangial cell protein kinase C (PKC) contributes significantly to the pathogenesis of diabetic nephropathy. Excess glucose metabolism through the polyol pathway leads to de novo synthesis of both diacylglyerol (DAG) and phosphatidic acid, which may account for increased mesangial cell PKC-alpha, -beta, -delta, -epsilon, and -zeta activation/translocation observed within 48-h exposure to high glucose. Raised intracellular glucose causes generation of reactive oxygen species that may directly activate PKC isozymes and enhance their reactivity to vasoactive peptide signaling. In both diabetic rodent models of diabetes and cultured mesangial cells, PKC-beta appears to be the key isozyme required for the enhanced expression of transforming growth factor-beta(1), initiation of early accumulation of mesangial matrix protein, and increased microalbuminuria. Enhanced collagen IV expression by mesangial cells in response to vasoactive peptide hormone stimulation, e. g., endothelin-1, requires PKC-beta, -delta, -epsilon and -zeta. Loss of mesangial cell contractility to potent vasoactive peptides and coincident F-actin disassembly are due to high-glucose-activation of PKC-zeta. Inhibition of mesangial cell PKC isozyme activation in high glucose may prove to be the next important treatment for diabetic nephropathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据