3.8 Article

Fluid-stochastic-event graphs for evaluation and optimization of discrete-event systems with failures

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TRA.2002.1019465

关键词

discrete-event systems; evolution equations; failures; fluid Petri nets; optimization

向作者/读者索取更多资源

This paper addresses the performance evaluation and optimization of failure-prone discrete-event systems. We propose a fluid-stochastic-event graph model that is a decision-free Petri net. Tokens are considered as continuous flows. A transition can be in operating state or in failure state. Jumps between failure and operating states do not depend on the firing conditions, and the sojourn time in each state is a random variable of general distribution. For performance evaluation, a set of evolution equations that determines continuous-state variables at epochs of failure/repair events is established. The cumulative firing quantity of each transition is proven to be concave in system parameters, including firing rates and initial marking. Gradient estimators are derived. Finally, an optimization problem of maximizing a concave function of throughput rate and system parameters is addressed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据