4.4 Article

Amino acid encoding schemes from protein structure alignments: Multi-dimensional vectors to describe residue types

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 216, 期 3, 页码 361-365

出版社

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1006/jtbi.2001.2512

关键词

-

向作者/读者索取更多资源

Bioinformatic software has used various numerical encoding schemes to describe amino acid sequences. Orthogonal encoding, employing 20 numbers to describe the amino acid type of one protein residue, is often used with artificial neural network (ANN) models. However, this can increase the model complexity, thus leading to difficulty in implementation and poor performance. Here, we use ANNs to derive encoding schemes for the amino acid types from protein three-dimensional structure alignments. Each of the 20 amino acid types is characterized with a few real numbers. Our schemes are tested on the simulation of amino acid substitution matrices. These simplified schemes outperform the orthogonal encoding on small data sets. Using one of these encoding schemes, we generate a colouring scheme for the amino acids in which comparable amino acids are in similar colours. We expect it to be useful for visual inspection and manual editing of protein multiple sequence alignments. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据